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We previously reported the chaos induced by the frustration of interaction in a nonmonotonic sequential
associative memory model, and showed the chaotic behaviors at absolute zero. We have now analyzed bifur-
cation in a stochastic system, namely, a finite-temperature model of the nonmonotonic sequential associative
memory model. We derived order-parameter equations from the stochastic microscopic equations. Two-
parameter bifurcation diagrams obtained from those equations show the coexistence of attractors, which do not
appear at absolute zero, and the disappearance of chaos due to the temperature effect.
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I. INTRODUCTION

Chaos occurs in systems that consist of chaotic or binary
units. For instance, the globally coupled map and chaos neu-
ral networks[1–4] consist of chaotic units, while neural net-
works consist of nonchaotic units. Although the processing
units in neural networks are simple binary units, chaotic be-
havior can be observed at the macroscopic level. Chaotic
behavior can be induced by various mechanisms: synaptic
pruning, synaptic delay, thermal noise, sparse connections,
and so on[5–8]. These models are deterministic systems.
Chaotic behavior can also be observed in stochastic systems
[9]. Using the Dale hypothesis, Fukai and Shiino[5] showed
that chaos can occur in neural networks.

Stochastic behavior can be distinguished from chaotic be-
havior based on the exponents, e.g., the Lyapunov exponent.
Therefore, analyzing deterministic chaos in stochastic sys-
tems is very interesting[10,11]. While there is a close rela-
tionship between microscopic behavior and macroscopic be-
havior, the macroscopic state cannot always be estimated
from the microscopic state. Frustration-induced chaos is an
example of that. For continuous systems, chaotic behaviors
in some small networks with frustration of interaction can be
analyzed at the microscopic level[12–14]. In some large
random neural networks, a dynamical mean-field theory was
introduced to analyze chaotic behaviors by Sompolinskyet
al. [15]. We have shown that chaos can be induced by frus-
tration of interaction in a nonmonotonic sequential associa-
tive memory model[8].

The sequential associative memory model is a neural net-
work in which the sequence of patterns is embedded as an
attractor through Hebbian(correlation) learning [16–19].
When the number of patternsp is of the orderOsNd, where
N is the number of processing units, the model has frustrated
interactions[20]. The properties in stationary states were
analyzed exactly using the path-integral method[17,18] be-
cause the theoretical treatment of the transient was difficult.

However, the transient of the model was recently rigorously
analyzed[19].

The nonmonotonicity of processing units(a larger abso-
lute value of the local field tends to make their state opposite
that of the local field) gives a system superior properties,
e.g., enhanced storage capacity, fewer spurious states, and a
super retrieval phase[21–23]. The systems with nonmono-
tonic units have chaotic behaviors. Dynamic theories are in-
dispensable for analyzing the chaotic behaviors. The dynami-
cal mean-field theory[15] is exact in the limit ofN→`, and
one can analyze the chaotic behaviors in random neural net-
works. Only approximated theories, e.g., Gaussian approxi-
mation [16,23–27] or steady-state approximation[17,18],
have been used to investigate the occurrence of these chaotic
behaviors in the associative memory models.

In our previous work[8], we constructed bifurcation dia-
grams of a nonmonotonic system. We showed chaotic behav-
iors in a nonmonotonic sequential associative memory model
at absolute zero and demonstrated that the chaos occurs only
when it has some degree of frustration.

In this paper, we analyze bifurcations in our model at a
finite temperature. We note that the microscopic behavior is
stochastic while the macroscopic one is deterministic[19].
We can therefore analyze its macroscopic dynamics rigor-
ously and construct two-parameter bifurcation diagrams
from our order-parameter equations. The structure of the bi-
furcation is changed by the finite temperature effect. We ana-
lytically show the area of a cusp point and the coexistence of
attractors, which do not appear at absolute zero.

II. SEQUENTIAL ASSOCIATIVE MEMORY MODEL

Consider a sequential associative memory model consist-
ing of N units or neurons. The state of the units takessistd
= ±1 and is updated synchronously with probability
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Probfsist + 1duhistdg =
1

2
f1 + sist + 1dF„histd…g, s1d

histd = o
j=1

N

Jijs jstd + I istd, s2d

where Jij is the coupling,I istd is the threshold or external
input, andhistd is the local field. FunctionFshd is a non-
monotonic function given by

Fshd = tanhbh − tanhbsh − ud − tanhbsh + ud, s3d

where b is the inverse temperaturesb=1/Td, and u is the
nonmonotonicity. WhenT=0, the update rule of the model is
deterministic:

sist + 1d = sgnfhistdg − sgnfhistd − ug − sgnfhistd + ug.

s4d

When the absolute value of the local field is larger thanu, the
sign of the state is opposite that of the local field, i.e.,sist
+1d=−sgnfhistdg. Coupling Jij storesp random patterns,jm

=sj1
m ,¯ ,jN

mdT, so as to retrieve the patterns sequentiallyj0

→j1→¯j p−1→j0. It is given by

Jij =
1

N
o
m=0

p−1

ji
m+1j j

m, s5d

wherej p=j0. The number of stored patterns is given byp
=aN, wherea is the loading rate. Each component of the
patterns is assumed to be an independent random variable
that takes a value of either +1 or −1 based on

Probfji
m = ± 1g =

1

2
. s6d

We determine the initial statess0d based on

Probfsis0d = ± 1g =
1 ± ms0dji

0

2
. s7d

The overlap, the direction cosine betweenss0d andj0, con-
verges toms0d asN→`.

III. MACROSCOPIC STATE EQUATIONS

To discuss the transient, we introduce macroscopic state
equations by using the path-integral method[17–19]. Gener-
ating functionZfcg is defined as

Zfcg = o
ss0d,…,sstd

pfss0d,ss1d,…,sstdg

3expS− io
s,t

sssd · cssdD , s8d

where c=fcs0d ,… ,cst−1dg. State sssd
=fs1ssd ,… ,sNssdgT denotes the state of the spins at times,
and path probabilitypfss0d ,ss1d ,… ,sstdg denotes the
probability of taking the path from initial statess0d to state
sstd at time t throughss1d ,ss2d ,… ,sst−1d. Since the dy-

namics, Eq.(1), is a Markov chain, the path probability is
given by

pfss0d,ss1d,…,sstdg

= pfss0dgp
s,t

p
i

1

2
f1 + siss+ 1dF„hissd…g. s9d

The generating function involves the following order pa-
rameters:

mssd = i lim
c→0

1

No
i=1

N

ji
s] Zfcg
] cissd

, s10d

Gss,s8d = i lim
c→0

1

No
i=1

N
]2Zfcg

] cissd ] I iss8d
, s11d

Css,s8d = − lim
c→0

1

No
i=1

N
]2Zfcg

] cissd ] ciss8d
. s12d

Order parametermssd corresponds to the overlap, which rep-
resents the direction cosine between statesssd and retrieval
patternj s at time s. Gss,s8d and Css,s8d are the response
and correlation functions, respectively, between times and
s8. Therefore, the problem of evaluating the macroscopic dy-
namics leads to the problem of evaluating the generating
function.

We consider the case of thermodynamic limitN→` and
analyzeZfcg using the saddle point method. SinceN→`
and stored patternsjm are random patterns, we can assume
self-averaging with respect to the realization of disorder; that
is, we would like to averageZfcg over the uncondensed
patterns. And then using the normalization conditionZf0g
=1 [28,29], we can eliminate invalid order parameters and
derive effective order parameters. We can therefore obtain a
rigorous solution using the path-integral method[19].

Finally, we obtain the following macroscopic state equa-
tions fromZfcg when I issd=0:

mssd =Kj sE DzFsj smss− 1d + zÎaRss− 1,s− 1ddL
j

,

s13d

Rss,s8d = Css,s8d + Gss,s− 1dGss8,s8 − 1dRss− 1,s8 − 1d,

s14d

Gss,s− 1d =
1

ÎaRss− 1,s− 1d
KE DzzFsj smss− 1d

+ zÎaRss− 1,s− 1ddL
j

, s15d
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Css,s8d =KE dz

2puR11u1/2expF−
1

2
z ·R11

−1zGF„j smss− 1d

+ Îazss− 1d…F„j s8mss8 − 1d + Îazss8 − 1d…L
j

,

s16d

where Dz=sdz/Î2pdexpf−s1/2dz2g, and k¯lj denotes the
average over allj’s. Matrix R11 is a 232 matrix consisting
of the elements ofR at timess−1 and s8−1, andz=fzss
−1d ,zss8−1dgT. From Eqs. (13)–(16), Css,s8d=0 and
Rss,s8d=0 whensÞs8. SinceGss,s−1d and Css,sd can be
described using onlymss−1d andRss−1,s−1d, macroscopi-
cally this system is a two-degree-of-freedom system ofmssd
andRss,sd. Since we can easily calculate the Gaussian inte-
grals, we can analyze the transient dynamics exactly even if
the network fails in retrieval. We note thatmssd is an odd
function andRss,sd is an even function, since the function
Fshd is an odd function. Therefore, the map by the macro-
scopic state equations is line symmetric with respect to the
line m=0.

In addition to these dynamic macroscopic state equations,
the fixed points of the system are required in order to analyze
the bifurcation of the system. We setmstd→m,Gst ,t−1d
→G and Rst ,td→ r when t→`. Then, the previously ob-
tained stationary state equations[17,18] are rederived using
our dynamic theory

m=KjE DzFfjm+ zÎargL
j

, s17d

G =
1

Îar
KE DzzFfjm+ zÎargL

j

, s18d

r =
1

1 − G2 . s19d

IV. MACROSCOPIC DYNAMICS

We can obtain the macroscopic dynamics(13)–(16) from
the stochastic microscopic dynamics. Moreover, the Jacobian
matrix Jssd can be easily calculated from these equations

Jssd = 3
] mssd

] mss− 1d
] mssd

] Rss− 1,s− 1d
] Rss,sd

] mss− 1d
] Rss,sd

] Rss− 1,s− 1d
4 . s20d

We can therefore classify fixed points according to their ei-
genvaluesl. We analyze the transient for a finite tempera-
ture, e.g.,T=0.10. Figure 1 shows the transition of the over-
lap mstd and the variance of the crosstalk noiseaRst ,td. The

FIG. 1. (Color) Transition of overlapmstd and variance of
crosstalk noiseaRst ,td for a=0.065,u=1.20,T=0.10. Fixed points
P,P8 ,Q are from stationary state equations:(a) our theory, (b)
simulationsN=100 000d.

FIG. 2. (Color) Two-parameter bifurcation diagramsu ,ad for (a)
fixed pointQ and(b) fixed pointP at T=0. The blue region repre-
sents period-1 attractors, red period-2, green period-3, yellow
period-4, purple period-5, sky blue period-6, and black for more
than six periods, quasiperiodic or chaotic.
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graphs show the results obtained using(a) our theory and(b)
computer simulation withN=100 000, where loading ratea
is 0.065 and nonmonotonicityu is 1.20. The cross marks
sP,P8 ,Qd are fixed points. PointP is a repellor(unstable
focus), since the eigenvalues arel=−0.21±1.40i; P8 is a
repellor (unstable node) becausel=−1.30,1.18; andQ on
line m=0 is a saddle node(orientation reversing) because
l=−1.29,0.91. There is a period-2 attractorQ2 that attracts
the trajectories with initial statems0d<0. Moreover, there is
a chaotic attractor around repellorP. The results obtained
using our theory agree with those using computer simulation.
Since our dynamic macroscopic state equations are derived
exactly, the difference between the theoretical analysis and
the computer simulation is due to finite size effect.

V. BIFURCATION DIAGRAM FOR T=0

We investigated the relationships of the invariant sets
shown in Fig. 1 in two-parameter space with respect to
su ,ad. Line m=0 is an invariant set of the macroscopic state
equations, and the map of the system is line symmetric with
respect to invariant linem=0, as stated above. The dynamic
structure on this invariant line obeys a one-dimensional map
with respect toRst ,td [8]. Figure 2(a) shows a two-parameter

bifurcation diagram for the attractor on invariant linem=0
and Fig. 2(b) shows one for the attractor around repellorP
for T=0. The blue region represents the period-1 attractors,
red period-2, green period-3, yellow period-4, purple
period-5, sky blue period-6, and black for more than six
periods, quasiperiodic or chaotic. In Fig. 2(a), asu decreases,
a period-1 attractorQ bifurcates to a period-2 attractorQ2
and evolves into a chaotic attractor due to the period-
doubling cascade. In Fig. 2(b), some regions are denoted by
A, A8 , B, B8 , C, andD, and we can find bifurcations on the
boundaries between these regions.

A. Transient

Figure 3 shows the transient in regionsA andA8. There is
only a period-1 attractorQ on the invariant line. Since the
map by our macroscopic state equations is irreversible, there
is an orientation-preserving area inside the semielliptical arc,
and an orientation-reversing area outside the arc. The
orientation-preserving area shrinks asu decreases. Therefore,
the transient inA differs from that inA8. In both cases, since
the stored patterns are unstable, the associative memory fails
to retrieve one from any initial state.

Figure 4 shows the transient in regionsB and B8. In re-
gion B, there is both a period-1 attractorQ on the invariant
line and a period-1 attractorP nearm=1. The orientation-

FIG. 3. (Color online) Attractor Q in (a) region Asa=0.30,u
=1.20d and (b) region A8sa=0.30,u=0.70d at T=0 by our theory.
The area inside the semielliptic arc is the orientation-preserving
area and the area outside is the orientation-reversing area.

FIG. 4. (Color online) Attractors P and P2 in (a) region Bsa
=0.20,u=1.50d and (b) regionB8sa=0.20,u=0.20d at T=0 by our
theory.
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reversing area is far from the origin. In this case, since the
stored patterns are stable, the associative memory can re-
trieve one when the state is in the basin of the attraction ofP.
Additionally, in region B8, there is both attractorQ and
period-2 attractorP2. The orientation-preserving area shrinks
to near the origin. AttractorP2 is a sign-reversing state near
line m= ±1. In this case, the stored patterns are unstable, and
the memory retrieves the stored pattern and its reverse one in
turn when the state is in the basin of attraction ofP2.

Figure 5 shows the transient in regionC. There is both a
period-2 attractorQ2 on the invariant line and a certain at-
tractor nearm=1. The attractor around repellorP is periodic,

quasiperiodic, or chaotic. In this case, although the stored
patterns are unstable, there is a quasiperiodic or chaotic at-
tractor. The state, therefore, goes to this attractor instead of
the memory state. Since the overlap is nonzero, the associa-
tive memory neither completely succeeds nor fails to retrieve
patterns.

Figure 6 shows the transient in regionD. There is a
period-1 attractorQ and a period-2 attractorQ2 on the in-
variant line. In this case, since the stored patterns are un-
stable, the associative memory fails to retrieve one from any
initial state.

B. Bifurcations

The coexistence, as stated above, can be explained by the
occurrence of characteristic bifurcations on the boundary be-
tween regions. On boundaryA→B, saddle nodeP8 and
period-1 attractorP are generated by the saddle node bifur-
cation, leading to the existence of bothQ and P. They are
separated by the basin boundary constituted byP8. The
boundaryB→A represents the storage capacity, i.e., the criti-
cal loading rate. On boundaryA8→B8, similarly, period-2
saddle nodeP28 and period-2 attractorP2 are generated by the
saddle node bifurcation, leading to the existence of bothQ
andP2. In contrast, on boundaryB→C, period-1 attractorP
evolves into a repellor due to the Hopf bifurcation, and a
quasiperiodic attractor is generated around the repellor. This
attractor is sometimes phase locked, and then it evolves into
a more complex quasiperiodic attractor by the Hopf bifurca-
tion again. The repellor inside the quasiperiodic attractor
then evolves into a snap-back repellor[30], and beltlike
chaos appears. Finally, the chaos spreads and becomes a
thick chaotic attractor, including repellorP. On boundary
C→D, the chaotic attractor disappears due to a boundary
crisis [31] because it comes into contact with the basin
boundary constituted byP8. Therefore, in regionD, there is
only period-2 attractorQ2 on the invariant line.

VI. BIFURCATION DIAGRAM FOR T.0

We constructed two-parameter bifurcation diagrams for
several finite temperatures. Figure 7 shows the diagrams for

FIG. 5. (Color online) Attractors aroundP in regionC: (a) qua-
siperiodic attractorsa=0.10,u=1.30d, (b) period-6 attractorsa
=0.01,u=1.20d, and(c) chaotic attractorsa=0.10,u=1.15d.

FIG. 6. (Color online) Attractors aroundP in region Dsa
=0.10,u=1.00d vanish due to the boundary crisis.
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FIG. 7. (Color) Two-parameter bifurcation diagrams on invariant linem=0 for (a) absolute zerosT=0d and (b)–(h) finite temperature
sT=0.05−0.35d. The abscissa denotesus0,u,1.7d, and ordinate denotesas0,a,0.302d on a logarithmic scale. Colors denote the period
of attractors as in Fig. 2.
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FIG. 8. (Color) Two-parameter bifurcation diagrams around fixed pointP for (a) absolute zerosT=0d and (b)–(h) finite temperature
sT=0.05−0.40d. The abscissa denotesus0,u,1.7d and the ordinate denotesas0,a,0.302d on a logarithmic scale. Colors denote period
of attractors as in Fig. 2.
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an attractor on invariant linem=0 for T=0.0−0.35. The ab-
scissa denotesus0,u,1.7d, and the ordinate denotes
as0,a,0.302d on a logarithmic scale. In the center of the
diagrams, we can find another bistable region in which at-
tractors coexist. As the temperature is increased, the bistable
region becomes larger. ForT.0, there is afishhookstructure
where the region of each periodic attractor divides into two
regions. WhenTù0.30, the more-than-two-period attractors
and chaotic attractors disappear.

Figure 8 shows the two-parameter bifurcation diagrams
for fixed point P or of the attractors aroundP for T=0.0
−0.40. The diagrams overlay those in Fig. 7 since one can
see the coexistence of attractorsP andQ. As the temperature
is increased, the Hopf bifurcation set becomes an isolated
circle and disappears via the codimension-2 bifurcation set.
Since a fishhook structure is evident in the diagram, there is
a cusp point, i.e., a codimension-2 bifurcation set, which
generates a pair of saddle node bifurcation sets.

We show the region where the cusp point exists. Figure 9
shows the two-parameter bifurcation diagrams for fixed point
Q, which are graded by eigenvaluel. The bright lines denote
eigenvaluel=0. There is only one curve forl=0 at T=0,
whereas there are two forT=0.05. A cusp point is in the
region surrounded by the curves.

VII. DISCUSSION

We can see that the chaotic region may be expanding to
a→0 in Figs. 7 and 8. We first discuss the cases ofa=0 and

a→0. Only one order parametermstd dominates the macro-
scopic behaviors of the present system without frustration of
interaction, that is, when the number of stored patterns is
finite sa=0d. We can easily show that there is no chaotic
attractor in this case. A chaotic attractor appears when the
system has frustration, i.e.,aÞ0. While the local field,histd,
obeys ad-function distribution whena=0, it obeys a Gauss-
ian distribution with varianceaRst ,td whenaÞ0. We show
the simple case ofT=0 andmstd=0. From Eqs.(4), (14), and
(15), the variance of crosstalk noiseaRst+1,t+1d can be
given by

aRst + 1,t + 1d = a +
2

p
H1 − 2 expS−

u2

2aRst,tdDJ2

.

s21d

Whena→0,aRst+1,t+1d converges to

aRst + 1,t + 1d =
2

p
H1 − 2 expS−

u2

2aRst,tdDJ2

, s22d

sinceRst ,td takes a large value in inverse proportion toa.
That is, aRst+1,t+1d still takes a finite value even ifa
→0. Figure 10 shows the return map ofaRst ,td for T=0 and

FIG. 9. (Color) Curve of eigenvaluel=0 and area of cusp point
for (a) T=0 and(b) T=0.05. The cusp point is in the rectangular
area.

FIG. 10. Return map of variance of crosstalk noiseaRst ,td for
a=0.001,u=1.0. Solid and broken lines denote cases ofT=0 and
T=0.3, respectively.

FIG. 11. Return map ofRst ,td for a=0.01,u=0.8. Solid and
broken lines denote cases ofT=0 andT=0.1, respectively.
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0.3. We can see that the fixed point is finitefaRst ,td.0g.
Because of this finite variance of the local field distribution,
the processing units, whose absolute values of local field
hist−1d are around nonmonotonicityu, take different values,
similar to those in Bakers’ map. This is the reason for the
occurrence of chaos in this model with frustration. Nontrivial
findings are that chaos also appears whena→0 and that the
phase is completely different from whena=0.

Next we discuss the reason for the change in the bifurca-
tion structure due to the finite temperature effect. We con-
sider the case of an attractor onmstd=0. Since fixed pointQ
is on invariant line m=0, the dynamics obeys a one-
dimensional map with respect toRst ,td. Figure 11 shows the
return map ofRst ,td. For T=0 (solid line), the map is uni-
modal and there is a period-2 attractor, whereas the map is
bimodal and there is a period-4 attractor forT=0.1 (broken
line). Therefore, the finite temperature effect changes the bi-
furcation structure, causing a bistable region to appear. When
T is large enough, the more-than-two-period attractors and

chaotic attractors disappear. Thermal noise, therefore, orders
the system. The ordering mechanism may be similar to that
of noise-induced order[10,11].

In summary, we considered a sequential associative
memory model consisting of nonmonotonic units, which is a
stochastic system, and derived macroscopic state equations
using the path-integral method in the frustrated case. The
results obtained by theory agreed with the results obtained by
computer simulation. We constructed two-parameter bifurca-
tion diagrams for various temperatures and used them to ex-
plain the changes in the structure of the bifurcations caused
by the temperature effect and the coexistence of attractors.
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