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We previously reported the chaos induced by the frustration of interaction in a nonmonotonic sequential
associative memory model, and showed the chaotic behaviors at absolute zero. We have now analyzed bifur-
cation in a stochastic system, namely, a finite-temperature model of the honmonotonic sequential associative
memory model. We derived order-parameter equations from the stochastic microscopic equations. Two-
parameter bifurcation diagrams obtained from those equations show the coexistence of attractors, which do not
appear at absolute zero, and the disappearance of chaos due to the temperature effect.
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I. INTRODUCTION However, the transient of the model was recently rigorously

Chaos occurs in systems that consist of chaotic or binarftn@lyzed/19]. o . .
units. For instance, the globally coupled map and chaos neu- The nonmonotonicity of processing unia larger abso-
ral networks[l_zl] consist of chaotic unitS, while neural net- lute value of the local field tends to make their state OppOSIte
works consist of nonchaotic units. Although the processinghat of the local fielgl gives a system superior properties,
units in neural networks are simple binary units, chaotic be€.9., enhanced storage capacity, fewer spurious states, and a
havior can be observed at the macroscopic level. Chaotiguper retrieval phasg21-23. The systems with nonmono-
behavior can be induced by various mechanisms: synapti®nic units have chaotic behaviors. Dynamic theories are in-
pruning, synaptic delay, thermal noise, sparse connectiongispensable for analyzing the chaotic behaviors. The dynami-
and so on[5-8. These models are deterministic systems.cal mean-field theory15] is exact in the limit ofN —c, and
Chaotic behavior can also be observed in stochastic systen@§ie can analyze the chaotic behaviors in random neural net-
[9]. Using the Dale hypothesis, Fukai and Shi[Bpshowed Wworks. Only approximated theories, e.g., Gaussian approxi-
that chaos can occur in neural networks. mation [16,23-27 or steady-state approximatiofi7,18,
Stochastic behavior can be distinguished from chaotic behave been used to investigate the occurrence of these chaotic
havior based on the exponents, e.g., the Lyapunov exponerighaviors in the associative memory models.
Therefore, analyzing deterministic chaos in stochastic sys- In our previous work{8], we constructed bifurcation dia-
tems is very interestin§l0,11. While there is a close rela- grams of a nonmonotonic system. We showed chaotic behav-
tionship between microscopic behavior and macroscopic bgors in a nonmonotonic sequential associative memory model
havior, the macroscopic state cannot always be estimate@t absolute zero and demonstrated that the chaos occurs only
from the microscopic state. Frustration-induced chaos is awhen it has some degree of frustration.
example of that. For continuous systems, chaotic behaviors In this paper, we analyze bifurcations in our model at a
in some small networks with frustration of interaction can befinite temperature. We note that the microscopic behavior is
analyzed at the microscopic levgl2—14. In some large stochastic while the macroscopic one is determinig].
random neural networks, a dynamical mean-field theory wa¥Ve can therefore analyze its macroscopic dynamics rigor-
introduced to analyze chaotic behaviors by Sompolinsky ously and construct two-parameter bifurcation diagrams
al. [15]. We have shown that chaos can be induced by frusfrom our order-parameter equations. The structure of the bi-
tration of interaction in a nonmonotonic sequential associafurcation is changed by the finite temperature effect. We ana-
tive memory mode][8]. lytically show the area of a cusp point and the coexistence of
The sequential associative memory model is a neural negttractors, which do not appear at absolute zero.
work in which the sequence of patterns is embedded as an
attractor through Hebbiargcorrelation learning [16—-19.
When the number of patternsis of the orderO(N), where Il. SEQUENTIAL ASSOCIATIVE MEMORY MODEL
N is the number of processing units, the model has frustrated
interactions[20]. The properties in stationary states were Consider a sequential associative memory model consist-
analyzed exactly using the path-integral metfid@d, 1§ be-  ing of N units or neurons. The state of the units taked)
cause the theoretical treatment of the transient was difficult= +1 and is updated synchronously with probability
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1 namics, Eq.1), is a Markov chain, the path probability is
Protioi(t+ D] = J[1+ai(t+ DFM(®)], (1) given by

N plo(0),o(1),...,o(1)]
hi(t):EJijU'j(t)‘”i(t), 2 1
=1 =ple@IL1IS[1+0i(s+ DF(h(sN].  (9)

where J; is the coupling,lj(t) is the threshold or external <t

input, andh;(t) is the local field. FunctiorF(h) is a non- The generating function involves the following order pa-
monotonic function given by rameters:
F(h) =tanhgh-tanhB(h- 6) —tanhg(h+ 6), (3) N
o1 a7
where 8 is the inverse temperatuf@=1/T), and 6 is the m(s) =ilim = > & [l/l], (10
w—oNiZ ™ 9 ()

nonmonotonicity. Whe =0, the update rule of the model is
deterministic:

(t+ 1) = sgrihi(t)] - sgrihi(t) - 6] — sgrihi(t) + 4]. N
oi(t+1) = sgrih(t)] - sgrihi(t) - 6] - sgrih(t) + 6] Gls.s) =ilim 1 > PZ[ ] | 11
(4) p—0NiZ; d () a1i(s)
When the absolute value of the local field is larger tidathe
sign of the state is opposite that of the local field, i&(t N
+1)=-sgnhi(t)]. Coupling J;; storesp random patterng; C(ss') = - lim 12 PZ ] (12)
=(&,---,&)7, so as to retrieve the patterns sequentigfly ' w—0Ni=] di(s) d (s

— gL O tis given by

1Pt Order parametem(s) corresponds to the overlap, which rep-
3= NE gt ’, (5)  resents the direction cosine between stats) and retrieval
u=0 pattern&S at time s. G(s,s’) and C(s,s’) are the response
where £P=£. The number of stored patterns is given oy and correlation functions, respectivgly, between tismnq
=aN, where is the loading rate. Each component of the s'. Therefore, the problem of evaluating th_e macroscopic Qy-
patterns is assumed to be an independent random variaf}@Mmics leads to the problem of evaluating the generating

that takes a value of either +1 or —1 based on function. S
We consider the case of thermodynamic liMdit>o and

Proffgt = + 1]= }. ©) analyzeZ[ ] using the saddle point method. Sinkk—
2 and stored patterng* are random patterns, we can assume
) o self-averaging with respect to the realization of disorder; that
We determine the initial stater(0) based on is, we would like to averag&[] over the uncondensed
1im(O)§iO patterns. And then uging the_norr_nalization conditigi0]
Profo(0)= £ 1]= —s (7 =1 [28,29, we can eliminate invalid order parameters and

derive effective order parameters. We can therefore obtain a
The overlap, the direction cosine betwee(0) and£°, con-  igorous solution using the path-integral metfad).

verges tom(0) asN— . Finally, we obtain the following macroscopic state equa-
tions fromZ[ 4] whenl;(s)=0:

. MACROSCOPIC STATE EQUATIONS ’
m(s) = §Sf DZF(§Sm(s— 1) +zyaR(s-1,5- l)) ,

To discuss the transient, we introduce macroscopic state ¢
equations by using the path-integral mettj@d—19. Gener- (13)
ating functionZ[ ] is defined as

A <o>E ® Pleor(@). o1),.... (0] R(s,s') =C(s;s') + G(s,;s— 1)G(s',s' - DR(s- 1,8' - 1),
..... (14
Xexp(— i> a(s) - lx;(s)), (8)
s<t
where  =[(0),...t-1].  State (9 Glss— 1) = 1 f D.zF(£5m(s— 1
=[o4(9),...,0n(5)]" denotes the state of the spins at tisje (55-1) VaR(s-1,5-1) ZF{(gmls~1)
and path probabilityp[a(0),o(1),...,0(t)] denotes the
probability of taking the path from initial state(0) to state +7zVaR(s-1,5— 1))> , (15)
o(t) at timet througho(1),0(2),...,0(t-1). Since the dy- &
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FIG. 2. (Color) Two-parameter bifurcation diagraf, «) for (a)
6 : fixed pointQ and(b) fixed pointP at T=0. The blue region repre-
sents period-1 attractors, red period-2, green period-3, yellow
4 period-4, purple period-5, sky blue period-6, and black for more
than six periods, quasiperiodic or chaotic.
2 |
In addition to these dynamic macroscopic state equations,
0 the fixed points of the system are required in order to analyze

the bifurcation of the system. We sefi(t) —m,G(t,t—1)
(b) — G and R(t,t) —»r whent—c. Then, the previously ob-
tained stationary state equatiofis,1g are rederived using
FIG. 1. (Color) Transition of overlapm(t) and variance of our dynamic theory
crosstalk noiserR(t,t) for «=0.065,0=1.20,T=0.10. Fixed points

P,P’,Q are from stationary state equations) our theory, (b) - Y
simulation(N=100 000. m={ & | DF[ém+zyar] ; (17)

, dz i -2
+\az(s= DIF(ESm(S ~ 1) +Vaz(s' - 1)) ) | -
¢ el o
(16)
Where DZ:(dZ/\J"ET)eXd_(:L/Z)ZZ]l and < . >§ denotes the IV. MACROSCOPIC DYNAMICS

average over alf's. Matri)'< R;1is a 2X 2 matrix consisting We can obtain the macroscopic dynamit8)—(16) from
of the elements oR at timess-1 ands'—1, andz=[(S  he stochastic microscopic dynamics. Moreover, the Jacobian

-1),zs'=D]". From Egs. (13+16), C(s,8)=0 and  matrix J(s) can be easily calculated from these equations
R(s,s')=0 whens#s'. SinceG(s,s—1) and C(s,s) can be

described using onlyn(s-1) andR(s-1,s- 1), macroscopi- am(s) am(s)
cally this system is a two-degree-of-freedom systerm(s) om(s—1) JR(s-1,5-1)
andR(s,s). Since we can easily calculate the Gaussian inte- J(s) = IR(S,S) IR(S,S) : (20)

grals, we can analyze the transient dynamics exactly even if
the network fails in retrieval. We note thai(s) is an odd gms=-1) IR(s-1s-1)

function andR(s,s) is an even function, since the function We can therefore classify fixed points according to their ei-
F(h) is an odd function. Therefore, the map by the macro-genvalues\. We analyze the transient for a finite tempera-
scopic state equations is line symmetric with respect to théure, e.g.,T=0.10. Figure 1 shows the transition of the over-
line m=0. lap m(t) and the variance of the crosstalk noig®(t,t). The
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) ) ) FIG. 4. (Color onling Attractors P and P, in (a) region B(«
FIG. 3. (Color onling Attractor Q in (@) region A(=0.30.6  =0.20,6=1.50 and(b) regionB’(«=0.20,0=0.20 at T=0 by our
=1.20 and (b) regionA’(«=0.30,6=0.70 at T=0 by our theory.  theory,
The area inside the semielliptic arc is the orientation-preserving

area and the area outside is the orientation-reversing area. . . . . . .
g bifurcation diagram for the attractor on invariant line=0

. and Fig. 2b) shows one for the attractor around repelfor
graphs show the results obtained usiagour theory andb)  ¢or T=0. The blue region represents the period-1 attractors,
computer simulation WltrN:_l_OO_OOO, where loading rate g period-2, green period-3, yellow period-4, purple
is 0.065 and n_onmon(_)tonlcnﬁ_ is 1.20. The cross marks period-5, sky blue period-6, and black for more than six
(P,P’,Q) are fixed points. PoinP is a repellor(unstable  harings, quasiperiodic or chaotic. In Figa® asé decreases,
focus, since the eigenvalues are=-0.21+1.40; P’ is @ 3 period-1 attracto bifurcates to a period-2 attracte,
repellor (unstable nodebecausex=-1.30,1.18; an on  ang evolves into a chaotic attractor due to the period-
line m=0 is a saddle nodéorientation reversingbecause qoypling cascade. In Fig(1), some regions are denoted by
A=-1.29,0.91. There is a period-2 attrac@j that attracts A A’ B, B’, C, andD, and we can find bifurcations on the
the trajectories with initial staten(0) ~0. Moreover, there is  poundaries between these regions.

a chaotic attractor around repell&. The results obtained

using our theory agree with those using computer simulation.
Since our dynamic macroscopic state equations are derived
exactly, the difference between the theoretical analysis and Figure 3 shows the transient in regioAsindA’. There is

the computer simulation is due to finite size effect. only a period-1 attracto@ on the invariant line. Since the
map by our macroscopic state equations is irreversible, there

is an orientation-preserving area inside the semielliptical arc,

and an orientation-reversing area outside the arc. The
We investigated the relationships of the invariant setsrientation-preserving area shrinksédecreases. Therefore,

shown in Fig. 1 in two-parameter space with respect tathe transient irA differs from that inA’. In both cases, since

(0,a). Line m=0 is an invariant set of the macroscopic statethe stored patterns are unstable, the associative memory fails

equations, and the map of the system is line symmetric witho retrieve one from any initial state.

respect to invariant linen=0, as stated above. The dynamic  Figure 4 shows the transient in regioBsandB’. In re-

structure on this invariant line obeys a one-dimensional magion B, there is both a period-1 attract@ on the invariant

with respect tdR(t,t) [8]. Figure 2a) shows a two-parameter line and a period-1 attractd? nearm=1. The orientation-

A. Transient

V. BIFURCATION DIAGRAM FOR T=0
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70! ' . ‘N ' ' FIG. 6. (Color onling Attractors aroundP in region D(a

R L w O(’_O‘OIO’ 9_1 20 C | =0.10,6=1.00 vanish due to the boundary crisis.

50 quasiperiodic, or chaotic. In this case, although the stored

patterns are unstable, there is a quasiperiodic or chaotic at-
tractor. The state, therefore, goes to this attractor instead of

* ]
x P’ X . . .
30} ] the memory state. Since the overlap is nonzero, the associa-
Period 6 tive memory neither completely succeeds nor fails to retrieve
o 1 patterns.
+/ﬂ;\ Figure 6 shows the transient in regidh. There is a
107 4 J \P e 1 period-1 attractoiQ and a period-2 attracta®, on the in-
. ¥ ey
0

L F ¥ variant line. In this case, since the stored patterns are un-

o O 2 04 m 0.6 0.8 1.0 stable, the associative memory fails to retrieve one from any
initial state.
F7{. OC:OJO, 6=1.15 C ] B. Bifurcations
o The coexistence, as stated above, can be explained by the
occurrence of characteristic bifurcations on the boundary be-
5r i tween regions. On boundarg— B, saddle nodeP’ and
period-1 attractolP are generated by the saddle node bifur-
Q cation, leading to the existence of baghand P. They are
3t separated by the basin boundary constituted Fdy The
» boundaryB— A represents the storage capacity, i.e., the criti-
P : cal loading rate. On boundar’ — B’, similarly, period-2
1t 3 8 saddle nodé; and period-2 attractd?, are generated by the
saddle node bifurcation, leading to the existence of li@th

© O 0.2 04m 0.6 0.8 1.0 andP,. In contrast, on bounda— C, period-1 attractoP
evolves into a repellor due to the Hopf bifurcation, and a
FIG. 5. (Color onling Attractors around in regionC: (a) qua-  quasiperiodic attractor is generated around the repellor. This
siperiodic attractor(«=0.10,6=1.30, (b) period-6 attractor(a  attractor is sometimes phase locked, and then it evolves into
=0.01,/=1.20, and(c) chaotic attractofa=0.10,6=1.15. a more complex quasiperiodic attractor by the Hopf bifurca-
tion again. The repellor inside the quasiperiodic attractor
reversing area is far from the origin. In this case, since thehen evolves into a snap-back repell@0], and beltlike
stored patterns are stable, the associative memory can rehaos appears. Finally, the chaos spreads and becomes a
trieve one when the state is in the basin of the attractid?. of thick chaotic attractor, including repelld®. On boundary
Additionally, in region B’, there is both attractoQ and C—D, the chaotic attractor disappears due to a boundary
period-2 attractoP,. The orientation-preserving area shrinks crisis [31] because it comes into contact with the basin
to near the origin. AttractoP, is a sign-reversing state near boundary constituted bf’. Therefore, in regio, there is
line m=+1. In this case, the stored patterns are unstable, anghly period-2 attractof, on the invariant line.
the memory retrieves the stored pattern and its reverse one in
turn when the state is in the basin of attractionPof VI. BIFURCATION DIAGRAM EOR T>0
Figure 5 shows the transient in regi@ There is both a
period-2 attractoQ, on the invariant line and a certain at- We constructed two-parameter bifurcation diagrams for
tractor neam=1. The attractor around repellBris periodic,  several finite temperatures. Figure 7 shows the diagrams for
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(¢) T=0.10 (d) T=0.15

(e) T=0.20 (f) T=0.25

0 ) 1.7 0 ) 1.7

(@) T=0.20 (hy T=0.35

FIG. 7. (Color) Two-parameter bifurcation diagrams on invariant Ime0 for (a) absolute zerdT=0) and (b)«(h) finite temperature
(T=0.05-0.35. The abscissa denot#0< #<1.7), and ordinate denoteg0< «<<0.302 on a logarithmic scale. Colors denote the period
of attractors as in Fig. 2.
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(c) T=0.15 (d) T=025

(e) T=0.30 (f) T=0.32

0 ) 1.7 0 ) 1.7

(9) T=0.35 (h) T =0.40

FIG. 8. (Color) Two-parameter bifurcation diagrams around fixed pd&infor (a) absolute zerdT=0) and (b)—(h) finite temperature
(T=0.05-0.40. The abscissa denot@f0 < #<1.7) and the ordinate denoteg0< «<0.302 on a logarithmic scale. Colors denote period
of attractors as in Fig. 2.
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 (xR(s+1)

0.8}
Un 0=0.001, 6=1.0
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0.4

0.2}

0 02 04 06 08 1.0 12 14
oR(s)

FIG. 10. Return map of variance of crosstalk noig®(t,t) for
«=0.001,0=1.0. Solid and broken lines denote casess0 and
T=0.3, respectively.

a—0. Only one order parameter(t) dominates the macro-
scopic behaviors of the present system without frustration of
interaction, that is, when the number of stored patterns is
finite («=0). We can easily show that there is no chaotic
attractor in this case. A chaotic attractor appears when the
system has frustration, i.ex,# 0. While the local fieldh;(t),

0 e 1 7 pbey_s a&function_ distril:_)ution wherw=0, it obeys a Gauss-
. ian distribution with variancerR(t,t) whena# 0. We show
(b) T=005 the simple case 6F=0 andm(t)=0. From Eqgs(4), (14), and
(15), the variance of crosstalk noiseR(t+1,t+1) can be

FIG. 9. (Color) Curve of eigenvalua =0 and area of cusp point
for (@) T=0 and(b) T=0.05. The cusp point is in the rectangular
area.

given by

2 ¢ 2
an attractor on invariant linm=0 for T=0.0-0.35. The ab- aRtrLt+l)=at 77{1 2 ex;< ZaR(t,t))} '
scissa denote)(0< 0<1.7), and the ordinate denotes (21)
a(0< @< 0.309 on a logarithmic scale. In the center of the
diagrams, we can find another bistable region in which atWhena—0,aR(t+1,t+1) converges to

tractors coexist. As the temperature is increased, the bistable 5

region becomes larger. For> 0, there is dishhookstructure aR(t+1t+1)= g{l > exp{— ¢ )} (22)
where the region of each periodic attractor divides into two ' T 2aR(t,1) ’
regions. Wherl =0.30, the more-than-two-period attractors o )

and chaotic attractors disappear. sinceR(t,t) takes a large value in inverse proportiondo

Figure 8 shows the two-parameter bifurcation diagramsfhat is, aR(t+1,t+1) still takes a finite value even i
for fixed point P or of the attractors aroun® for T=0.0  —0. Figure 10 shows the return mapR(t,t) for T=0 and
—-0.40. The diagrams overlay those in Fig. 7 since one can
see the coexistence of attract®randQ. As the temperature R(s+1)
is increased, the Hopf bifurcation set becomes an isolated 80 0=0.01. 6=0.8
circle and disappears via the codimension-2 bifurcation set. T= ’

Since a fishhook structure is evident in the diagram, there is 60
a cusp point, i.e., a codimension-2 bifurcation set, which
generates a pair of saddle node bifurcation sets. e GGROL LR

We show the region where the cusp point exists. Figure 9 40
shows the two-parameter bifurcation diagrams for fixed point
Q, which are graded by eigenvaldeThe bright lines denote

..'W"':'.—.!--
=
g
O
]

H
H
H
H
H
\
’

eigenvaluen=0. There is only one curve far=0 atT=0, 20
whereas there are two for=0.05. A cusp point is in the i N\ :
region surrounded by the curves. 0 b o — = ]
0 20 40 R(s) 60 80

VII. DISCUSSION

We can see that the chaotic region may be expanding to FIG. 11. Return map oR(t,t) for «=0.01,6=0.8. Solid and
a—0in Figs. 7 and 8. We first discuss the casea®aD and  broken lines denote cases D£0 andT=0.1, respectively.
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0.3. We can see that the fixed point is finfieR(t,t) > 0]. chaotic attractors disappear. Thermal noise, therefore, orders
Because of this finite variance of the local field distribution,the system. The ordering mechanism may be similar to that
the processing units, whose absolute values of local fiel@f noise-induced ordefl0,11].

h;(t-1) are around nonmonotonicity, take different values, In summary, we considered a sequential associative
similar to those in Bakers’ map. This is the reason for thememory model consisting of nonmonotonic units, which is a
occurrence of chaos in this model with frustration. Nontrivial stochastic system, and derived macroscopic state equations
findings are that chaos also appears whenO and that the ysing the path-integral method in the frustrated case. The
phase is completely different from wher=0. ~ results obtained by theory agreed with the results obtained by
~ Next we discuss the reason for the change in the bifurcagomputer simulation. We constructed two-parameter bifurca-
tion structure due to the finite temperature effect. We conyion diagrams for various temperatures and used them to ex-
sider the case of an attractor oiit)=0. Since fixed poinQ  j5in the changes in the structure of the bifurcations caused

is on invariant linem=0, the dynamics obeys a one- . the temperature effect and the coexistence of attractors.
dimensional map with respect R{t,t). Figure 11 shows the

return map ofR(t,t). For T=0 (solid line), the map is uni-

modal and there is_a perio_d-2 attractor, whereas the map is ACKNOWLEDGMENTS

bimodal and there is a period-4 attractor fior 0.1 (broken

line). Therefore, the finite temperature effect changes the bi- This work was partially supported by Grant-in-Aid for
furcation structure, causing a bistable region to appear. Whefcientific Research on Priority Areas No. 14084212 and
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